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ON THE ENUMERATION OF PROPER AND IMPROPER REPRESENTA- 
TIONS IN HOMOGENEOUS FORMS. 

BY E. T. BELL. 

1. By the usual definition, a particular representation of n in the farm 

(1) 1a1jxjxj, (i, j = 1, 2, * r), 

e.g., through (x1, x2, *..., Xr) = (x1', x2', *., Xr'), is proper or improper 
according as the G.C.D. of the x' is ,1; and two representations 
(x1', x2', *.., Xr), (x1", x2 * *, xr") are identical only when 

x= xi", (i = l ., r). - 

Let T(n), P(n) denote respectively the total number of representations, 
and the number of proper representations of n in (1). Then, the z 
referring to every positive d such that n/d2 is an integer, we have* directly 
from the definitions 
(2) T(n) = 7P(n/d2). 

Similarly, if in place of (1) we have a homogeneous form of degree s, 
there is between the corresponding T, P the relation 

(3) T(n) = XP(n/d8), 

the z extending to all positive d such that n/d8 is an integer. Practically 
nothing of importance, except in the case of binary cubics, being known 
concerning T, P when s > 2, we shall confine the discussion to (2), merely 
indicating -in ? 15 the nature of the easy extension whereby all of the 
general formulk for s = 2 can be carried up to s > 2 whenever specific 
theorems for the latter cases shall be available. 

2. If the strictly arithmetical theory, due principally to Eisenstein, 
H. J. S. Smith and Minkowski, be used to find T(n), P(n), the natural 
(and historical) order appears to be first the determination of P(n), and 
thence by (2) the deduction of T(n). If, however we seek T(n), P(n) 
algebraically, either by elliptic functions or otherwise (cf. ? 9), T(n) 
always appears first, P(n) entering, if at all, only through cumbersome 
and artificial transformations of the analysis appropriate to T(n). It 

* For a detailed discussion of a particular case, cf. Bachmann, Die Arithmetik der Quadratischen 
Formen, p. 602. Note that in accordance with modern usage we have not assumed aij = as, 
in (1). 
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seems in fact that without previous knowledge of the results to be attained, 
suitable transformations of the fundamental identities would present 
themselves but seldom. On the other hand, it has frequently been 
pointed out* that where solutions of arithmetical problems by elliptic 
functions or other algebraic means exist, they are in general much simpler, 
shorter, and less delicate in application than the corresponding investiga- 
tions by processes peculiar to the theory of numbers. Hence it is of 
some importance to invert the present problem, deducing the P(n) directly 
from the T(n), the latter in many instances being given very simply by 
algebraical methods. It will be seen in ?? 6, 7 how this may always 
be done, and how, in ?? 8-11, for one of the most important classes of 
representations the general formulk assume simple and interesting shapes. 
By means of the formulae developed the deduction of P(n) from T(n) is 
immediate; in ?? 12-14 a few illustrations are given in the derivation of 
P(n) theorems due to Eisenstein and Liouville, the proofs for which seem 
not to have been published hitherto; also in writing down some new results 
for 6, 8, 10 and 12 squares. But the object of this paper being the general 
method, and not special consequences, applications are included only in 
sufficient number to make clear the use of the formula. It may be 
mentioned that by means of the formulke in ?? 10, 11 all of Liouville's 
numerous P(n) theorems which he published without proofs in the second 
series of his Journal, may be demonstrated almost at a glance. His T(n) 
theorems were all proved by Pepin, cf. ? 9; the proofs of the rest, all of 
which have been found by the methods of this paper, will appear in the 
Journal de Mathematiques for 1919. Theorems such as those of Liouville 
and Eisenstein concerning special quadratic forms are of importance as 
guides in the general theory of (1), which still is far from complete. 

3. All letters m, n, d, a denote positive non-zero integers; the m's are 
'always odd, and the n's arbitrary. We define n to be simple if it is divisible 
by no square > 1; and adopting Sylvester's convenient term, call the 
number of distinct prime factors of n its multiplicity. Consider 

(4) F(1) = 1, F(n1n2) = F(n1)F(n2), D(n1, n2) = 1, 

where D(n1, n2) is the G.C.D. of ni, n2. Functions F, f, g, * * * satisfying 
(4) we shall call factorable. If by the nature of the function, factorable 
f(n) is undefined for n = 1, then by convention f (1) = 1; also, f(x) = 0 
when x is not a positive integer. We shall require Mobius' y(n), which 
= 0 if n is not simple, and which otherwise = + 1 or - 1 according as 
the multiplicity of n is even or odd. It is readily seen that ,u(n) is factor- 

* See, for example, Glaisheres remarks in the Proc. London Math. Society (2), 5 (1907), 
pp. 489-490, ? 16. 
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able, and that 
(5) A,(d) = O. n > 1, 

n 

the notation S indicating that the sum is taken with respect to all divisors 

d of n. The fundamental property (5) is well known; nevertheless we 
recall one of the shortest ways by which it may be established, as the 
same applies to all subsequent identities concerning factorable functions. 
Since p.(n) is factorable, it suffices to verify (5) for n = pa, where p is 
prime. The divisors d in this case are 1, p, p2, ..., pa; and from the 
definition of ,u(n): ,u(1) =-1; A(p) = - 1; pu(pa) = 0, a > 1. In the 
same way each of the factorable function identities given later may be 
proved by verifying them for n = pa directly from the definitions of the 
particular functions involved. These verifications, presenting no diffi- 
culty or interest, will be omitted. 

4. Let (d, 8) denote any pair of conjugate divisors of n, so that n = d5. 
Form the value of spl(x)>I(y) for (x, y) = (d, 8), sum (pI(d)41(8) over all 
pairs (d, B), and denote the result by E cpoi(d)tI1(8). Let (61, J2) denote any 

n 

pair of conjugate divisors of 6, so that 

n = d6, 6 = 5182, n= d182. 

Put 4t(n) = E s2(d)so3(6); whence, 

E pil(d)it(6) = E [[pi(d) ( P2(61) P3(62)] = E pi(di) p2(d2) >p3(d3), 
s n ~~ ~~~8 n 

the last summation extending to all triads (di, d2, d3) such that n = did2d3. 
With this notation, and (p, q, r), (i, j, k) any permutations of (1, 2, 3), the 
following is obvious: 

E [(pp(d) h q(61) Pr(62)J = ( pi(dl) pj(d2) Pk(d3)a 
n 8 ~~~~~~~~n 

Clearly this may be extended to any number of functions s p, *2 . . 
It will be found that the case r = 4 is required in some of the verifications: 

E [ E s1(d1) s2(d2) EP S3(61) P4(62)] = E cpi(di) cP2(d2) 3(d34) (4(d4), 
n d n 

in the first of which A, A, z refer to all (d, 8), (di, d2), (61, 62) respec- 
n d a 

tively such that n = d6, d = d 8d2y 6 = 8162; and E in the second to all 

tetrads (di, d2, d3, d4) such that n = did2d3d4. Also it is evident that 

-Y [ E (p(d1)>p(d2) A (Pr(61)(Ps(62)] = E [pi(d) E 'Pj(651)cpk(62)cp1(63)], 
n d 8 n 

where in the second, A, S refer respectively to all (d, 6) such that n = d6, 
n 
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and to all (81, 82, 83) such that 8 = 818283; and (p, q, r, s), (i, j, k, 1) are 
any permutations of (1, 2, 3, 4). By the method of ? 3 it is easily shown 
that if <,i;, 02; 03, 4 ~are factorable, then each of the multiple sums in this 
paragraph is a factorable function of n. 

5. It is known that if gq(n), 92(n), g3(n) are factorable, then a factorable 
f(n) exists such that 
(6) Z f(d)g1(5) = Zq2(d)g3(6). 

n n 

Moreover, if f(n), g(n) both satisfy (6), then f(n) = g(n) for all n; viz., 
(6) has a unique factorable solution. The following special case is of 
importance presently. Write Ur(n) nr; then clearly ur(n) is a factor- 
able function of n, and (5) may be written in the form 

Ek(d)uo(b) = 0, n > 1. 

Hence, if g(n) is given and factorable, a unique factorable f(n) may 
always be found such that 

Ef(d)g(8) = 1; ,f(d)(8) = 0, n > 1. 

It suffices to observe that f (n) is uniquely determined by 

E f(d)g(a) = 4 (d) uo(6). 
n n 

6. Returning to ? 1, let e(n) = 1 or 0 according as n is or is not a 
square. Clearly e(n) is factorable. Replace (2) by its equivalent, 
(7) T(n) = E e(d)P(3); 

n 

and hence, for a any divisor of n, 

(8) T(S) = E(1)P(32) 

Multiply (8) throughout by f(d), where d is the conjugate of 8, and sum 
with respect to all pairs (d, 8). By ? 4 the result may be written 

(9) A T(d)f (a) = A [P(d) fE(51)f(82)]. 
n n 6 

Hence if f(n) is determined as the solution of 

(10) E f(d) e(a) = E (d)A(5) 
n 

we shall have by the last of ? 5 the following unique expression for P(n) 
in terms of T(n): 
(11l) P(n) = ) T(d)f(a). 

n 

Write A(n) X A(n) - A2(n); then A(n) being factorable, so also by the 
last of ? 4 is E ,(d)A2(5), sinceAu2(n) obviously is factorable; and as in ? 3 

n 
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it may be verified without difficulty that the factorable function of n, 

S [e(d) Z (81)I2(62)] = 1 or 0 

according as n = 1 or n > 1; that is, 

(12) f (n) = (d)A2(6) 

is the required solution of (10). Finally, then the inversion -(11) of (2) 
may be written 
(13) P(n) = E [T(d)E .(61)M2(62)I. 

n a6 

7. To reduce (11), (13) to forms whose arithmetical significance is 
immediate, consider f(n), which henceforth shall denote the function 
defined in (12). As in ? 3, on verifying the statement for pa, it is clear 
that f(n) vanishes unless n is the square of a simple number, when the 
value is + 1 or - 1 according as the multiplicity of -X4, or what is the 
same thing, the multiplicity of n, is even or odd. Hence (11), (13) may 
be paraphrased: The number of proper representations of n in (1) is 
equal to the sum of the total numbers of representations in (1) of all 
those divisors of n whose conjugates are squares of simple numbers of 
even multiplicity, diminished by the sum of the total numbers of repre- 
sentations in (1) of all those divisors of n whose conjugates are squares of 
simple numbers of odd multiplicity. It follows that the second sum never 
exceeds the first. 

8. By (12) or ? 7, for p prime we have 

(14) f(p). = 0; f(p2) = - 1; f(pa) = 0, a > 2. 

Combined with f(l) = 1, (14) has several important consequences which 
we proceed to develop. Let y(x) denote any function of x which vanishes 
when x is not a positive integer; and note that until further restricted, 
ey(x) is not necessarily factorable. Call r(n) defined by 
(15) r1(n) = E y(d)f(6) 

n 

the conjugate of ay(n). We shall always denote the conjugate of a given 
function by capitalizing; thus the conjugates of g(n), p7(n), r' (n), * 

are G(n), Zr(n), 2r'(n), * respectively. Consider r(pa), where p is 
prime. By (15), 
(16) r(pa) = 7y(1)f (pa) + 7y(p)f (pa-1) + * + 'y(pa-1)f (p) + Ty(pa)f(1); 

and hence from (14), 
(17) r(p) = y(p); r(pa) = y(pa) 

y 
y(pa-2), a > 1; 

both of which are included in the second, without the condition a > 1, 
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since -y(p-1) = 0. Again, if n is prime to p, 

p(pan) = E [ y y(psd)f(Ia-8 6)] 
n 8=0 

= E 'y(d)f(pa) + 7y(pd)f(pa-l) + + #y(pa-ld)f(p) n 

+ iy(pad)f(1) }f(a)], 
the- last on noticing that pa and 6 being relatively prime and f factorable, 
f(p"6) = f(p`)f(6). Whence, on applying (14), 

(18) P(pan) = [{y(pad) - y(pa-1d) If(S) 

for p prime and not a divisor of n. By repeated application of (18) we 
get a remarkable symbolic form of the inversion (11). Let 

n = paqb ... rc = I pa 

be the resolution of n into its prime factors; and let 

ll[y(pa) - y(pa-2)]A l[,y(pa) - (pa-2) 

denote respectively the ordinary product 

[.y(pa) - y(pa-2)][,y(qb) - y(qb-2)] ... [,y(r') - y(rc-2)], 

and the like taken symbolically as follows: After distribution, each term 
in II', such for example as y(pa) y(qb) . * * (rce2), is to be replaced by the 
,y of the product of the several arguments of the y's- in that term, e.g., the 
particular term selected is to be replaced by y(paqb ... rc-2); and the 
signs are to We as determined by the formal multiplication. Then from 
(18) we infer, on putting n = qbni where n1 is prime to q, reapplying (18) 
and continuing thus until all the distinct prime powers qb ..*, rc are 
exhausted, 
(19) n = llpa, r(n) = Hl'[y(pa) - -y(pa-2)]. 

The complete induction is immediate from (18), and need not be written 
out. Hence* from (11), (15), (19), 
(20) n = llpa, P(n) = II'[T(pa) - T(pa-2)]. 

9. The special cases of (19), (20) in which -y(n), T(n) are factorable 
have a particular interest and importance. The T(n) may be divided 
into two classes according as they are or are not factorable. The first 
includes all of the classical theorems of Gauss, Jacobi, Eisenstein, H. J. S. 
Smith and Liouville concerning representations of numbers as sums of 

* Either (20) or its equivalent in ? 7 may be proved from the definitions of T(n), P(n) by 
what H. J. S. Smith (Papers, I, p. 36) called the principle of cross-classification. The same 
principle gives also (5) and (19). 
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2, 4, 6, 8, 10 or 12 squares, with the exception of two additional theorems 
stated by Liouville, and proved by Glaisher, using elliptic functions, 
concerning 10 and 12 squares; it includes also the theory of those quad- 
ratic forms other than sums of squares to which the processes of elliptic 
functions are naturally adapted. Also when T(n) is factorable, T(n), 
P(n) may both be calculated in finite form directly from the real divisors 
of n alone, without the invention of other functions, always more or less 
complicated, depending upon the representation of numbers in the-given 
quadratic form in one of lower order. For forms other than sums of 
squares, the first three factorable P(n), T(n) theorems were stated by 
Eisenstein in his famous memoir, Neue Theoreme der hoheren Arithmetik 
(Crelle, 35 (1847), p. 134); but the great mass of known results in this 
direction is due to Liouville, cf. ? 12, footnote. It may be shown* that 
Liouville's 'formules generales' are equivalent to elementary identities 
in elliptic functions, whence they follow by a simple method of paraphrase. 
Hence all of Liouville's P(n), T(n) theorems ultimately depend upon the 
elements of elliptic functions, Pepint having deduced the T(n) results 
from the formules gen6rales, and the P(n) being consequences of these, 
as we shall presently indicate. The relation of Eisenstein's results to 
elliptic functions will be glanced at in ? 14, footnote. It seems, in short, 
as lately suggested by Mordell,t that elliptic functions may have played 
a greater part in the discovery of many theorems than has been commonly 
supposed. In speaking of his P(n) results, Liouville remarks (J. des 
Math. (2), 7 (1862), p. 16), "Il y a du reste a ce sujet, une m6thod generale 
qui s'offre d'elle-meme." Since the solution (12) is unique, (11) or its 
equivalent (13) must be what Liouville had in mind. We shall now ex- 
amine the factorable case in some detail; (11), (20) apply to any case, 
factorable or not. 

10. For G(n) the conjugate of factorable g(n), and for T(n) factorable, 
we have from (19), (20), 

(21) n = llpa, G(n) = I[ g(pa) - g(pa-2 A; 

(22) n = llpa, P(n) = TI[T(pa) - T(pa-2)]. 

For many forms (1) it has been found necessary or convenient to 
distinguish several T(n) according to special factors of n; thus? for m 
prime to 3, and 

n = 2f36-m =X2 + y2 + z2 + 3U2 
* In a series of papers presented to the American Math. Society, Oct., 1918, Liouvillq's 

general formula. are derived incidentally. 
t Journal des Math., 1890, pp. 1-64. 
t Quarterly Journal Math., 48 (1917-1918), No. 189. 
? For the details cf. Liouville, J. des Math. (2), 8 (1863), pp. 105-114; 193-204. 
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the T(n) take different forms (which, however, may all be included in 
one general formula), according as a = 0, a = 1, a > 1, and f = 0, 
(3 = 1, ( > 1. We say that T(n) for this form has special characters 
with respect to the primes 2, 3. Let pi, P2, * Ad pr be the primes with 
respect to which, for a given form, T(n) has special characters. Then 
P(n) is most readily investigated either by (18) or by 

n = n2 TI pzai, P(n) = P(n2) I [T(pai) -T(p a;-2)] 

wherein n2 is prime to pi (i = 1, ***, r). Examples will be found in the 
illustrations. The importance of (21) is that for T(n) factorable, P(n) is 
the conjugate of a factorable function; hence we require such conjugates 
for (1). 

11. A few g(n) occur repeatedly in determinations of T(n) for (1). 
All those in the literature are included in the following, or in simple 
modifications of them which it is unnecessary to consider here. Hence 
we shall find their corresponding G(n), the notation being that of ? 10, 
in order that the necessary data for writing down the corresponding P(n) 
by (21), (22) may be readily accessible. By the usual convention the 
value of (a I b), the Legendre-Jacobi symbol, is zero if a, b are not relatively 
prime, and (a b) is non-existent when b is even. In the following list 
the II-notation has the same significance as in ? 8; the II-forms of the 
g(n) are immediately evident from the definitions of the specific g(n); 
and the deduction from these of the corresponding conjugates will be 
sufficiently clear from the full derivation of one of them. We recall 
that m is positive and odd. That all of the functions except X are factor- 
able is clear from their definitions. 

(i) Let 1 denote an odd positive or negative constant integer prime to 
m, and define the w, w' functions by 

. (in, 1) = E (d l) dr, Cur (1, m) = E (l Id) dr, 

lr'(mn, 1) = E (ajl)dr, C3r'(,1 m) = E (li a)dr. 

Hence for m = fIpa, we have: 

t 
( I) 

al pr(a+l) - (pa+l || - (1)[pr(a+l) _ l|pa+i) 

and it is easily seen that 
Wr(,) = (m 1) wr'(m, 1); Wr(l, M) = (1IM)Wr'(l, m). 

Observing that (pa+l I 1) = (pa-i 1), and hence 

I'(pa, 1) - (pa-2, 1) = pr(a+l) 
- r(a-1) 

ra + (p 1 
?r -pal Wr - pr - (p |1) prj 
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we have from (21) for the conjugate of wr'(m, 1), 

?or'(m, 1) -I[Wr'(pa, 1) - Wr'(pa-2, 1)] = mrU [1 + (p I 1) pL] 

Any conjugate may be found in the same way. We get thus 

WrY(l, m) = mrl[ 1 + (1 I p) ,] mrll [1 + (- 1)k(1-)(P-1)(p 1) r] 

the last on using the extended law of quadratic reciprocity; and 
Or(m, 1) = (mIl)2Qr'(m, 1); Or(l, m) = (lIm) Or'(l, m). 

The first form of ?r'(l, m) presents itself directly in the consideration of 
(1); the second is better adapted to computation, and is equivalent to 
that occurring (for special values of r, 1) in the writings of Eisenstein, 
Liouville and others. With these are two companions for the even case: 

(ii) wr(m) = E (2 d)dr, wr'(m) = E (21 6)dr. 
m in 

From these definitions we find as above, 

Qr,'(m) = (2 jm)Or(m) = mrIL[1 + (2 Ip) J 

From the definitions it is clear that wr(m) is the sum of the rth powers of 
all those divisors of m which are of either form 8k i1 1, diminished by the 
like sum for the divisors of either form 8k i4 3; wr'(m) is the sum of the 
rth powers of all those divisors whose conjugates are of either form 8k i 1, 
diminished by the like sum for the divisors whose conjugates are of either 
form 8k i 3. Similarly, for l prime, cor(m, 1) is the sum of the rth powers 
of all those divisors of m that are quadratic residues of 1, diminished by 
the like sum for the divisors that- are quadratic non-residues; co,(l, m) 
is the sum of the rth powers of all those divisors of m of which 1 is a quad- 
ratic residue, diminished by the like sum for the divisors of which 1 is a 
quadratic non-residue; and wr'(m, 1), c-r'(l, m) are the corresponding 
functions in which the divisors are segregated into classes according to the 
quadratic characters of their conjugates. 

(iii) For 1 = - 1 4lie c-functions take important forms which, as they 
occur so frequently, are denoted by special letters. These appear first 
in the cases when (1) degenerates to a sum of squares; thus, they are 
familiar through the investigations of Jacobi, Eisenstein, H. J. S. Smith 
-and Glaisher for 2, 6, 10, 14 and 18 squares; they also enter when (1) is 
a sum of 3, 7 or 11 squares.* 

* In a paper presented to the American Mathematical Society, April, 1919, the T(n) are 
given in the form of finite sums of the functions defined in ? 11 when (1) is a sum of 3, 5, 7, 9, 11 
or 13 squares, the arguments of the functions forming recurring series of the second order, and 
the number of odd squares in the representations being either pre-assigned or arbitrary. 
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Write 
cr( 1-, m)-=-tr(fl), @,3'(-.1, m)- =() 

whence 
tr' (m) = (- l)(m-1) /2 r(m), =r(m) = (- 1) (m-1) /2, - r(m) 

r (m)= m l [1 1 P) = mrll[1 + (- 1)(p-1)/2 
1 

; 

and -tr(m) is the excess of the sum of the rth powers of all those divisors 
of m that are of the form 4k + 1 over the like sum for the divisors of the 
form 4k - 1; tr'(m) is the similar function in which the conjugates of the 
divisors are of the respective forms 4k + 1, 4k - 1. For n = 2am we have 

{r(n) = tr(m), V '(n) = 2atr (m); 

and noticing that by an obvious extension Wr(n, 1), wr'(n, 1) may be defined 
for a > 0, the following conjugates: 

tr (2m) = S7(m); Sr (2am) = 0, a > 1; 
r' (2m) = 2r/r (m); Z/(2am) = 2(a-2)r(22r - 1)Z '(m), a > 1 

(iv) For n = 2am, a _ 0, and n = llpa the resolution of n into prime 
factors, Rr(n), Rr'(fn) the respective sums of all, of the odd divisors of n, 
we have in the same way: 

Dof(n) = lPr N 1 ; r' (n) = m); 

Zr(n) = nrl [ 1 + Zr(2am) 2(a1)r(2r + 1)Zr(m), a > 0; 

Zr'(2m) = Zr'(r) = Zr(m); Zrf(2am) = 0, a > 1. 

(v) Closely related to these are the two following: ar(n), = the sum of 
the rth powers of all those divisors of n whose conjugates are odd; and 
the non-factorable Xr(n) defined by 

Xr(n) = [2(- 1)n + 1] r'(n). 

For the respective conjugates we find, using (18) for Ar: 
Ar(m) = Zr(m); Ar(2m) = 2rZr(m); 

Ar(2am) = 2r(a-2)(22r- 1)Zr(m), a > 1; 

Ar(m) = - Zr(m); Ar(2m) = 3 Zr(m); Ar(4 m) = 4Zr(m); 
Ar(2am) = 0, a > 2. 

12. As a first illustration of the formulhe we take Eisenstein's theorems.* 
* Eisenstein, Crelle, 35 (1847), pp. 134-135. 
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We shall assume the T(m), all of which, occurring among the forms con- 
sidered by Liouville,* are proved in Pepin's memoir, and from them 
deduce the P(m). The forms are 

x2 + y2 + Z2 + 3u2; x2 + y2 + 2z2 + 2uz + 2u2; x2 + Y"I + Z2 + 5U2 

and when m is prime to 3 for the first two, prime to 5 for the third, the 
several cases of Eisenstein's T(m) may be written for the three forms 
respectively: 

T(m) = Ac01(3, m), B-S1(3, m), Cwl(m, 5)-; 

A = [2(- ljm) + 1][3(- 3jm) - 1], 

B = [2(- ljm) - 1][3(- 3jm) + 1], 

C = 5(mi5) + 1. 

It is convenient to separate A into two cases, A' for m 12 7 mod 12, 
A" for m 5, 11 mod 12: 

A' = 2[1 + 2(3 jm)], A" = 4[2(3 jm) - 1]. 

Hence for the first form when m- 1, 7 mod 12, we have by (22) and ? 11 
(i), 

P(m) = 2[Qi(3, m) + 2Q01'(3, m)] = 2[(3jm) + 2]Q2f'(3, m); 

and when i 5, 11 mod 12, 

P(m) = 4[20,f'(3, m) - 01(3, m)] = 4[2 - (3 im)]Qlf'(3, m) 

It is readily seen that both are included in either of the single formulae, 
the second following at once from the first by ? 11 (i), 

P(m) = (3im)AQ2'(3, m), Pi(m) = A 1(3, mi), 

either agreeing with the four cases stated by Eisenstein. Similarly, on 
separating B in the same way mod 12 into 

B' = 4[- 1 + 2(3jm)], B" = 2[1 + 2(3jm)], 

we find for the second form 

P(m) = (31m)BQ1'(3, m), P(m) = BQ1(3, m); 

and for the third, without separation, 

P(m) = (m15)Cu2i'(m, 5), P(m) = Co1(m, 5). 

Thus in all cases we may pass from T to P by changing w into Q, a special 
case of a general theorem which need not concern us here. 

* Journal des Math. (2), vols. 4-11 (1859-1866). 
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13. The treatment of special characters (? 10) is exemplified by 
Liouville's* 

X2 + 2y2 + 4z2 + 4u2, 
for which he states 

T(m) = 2w1'(m); T(2am) = 2[2a - (2jm)]wl'(m), a > 0. 
Hence by ? 11 (ii), P(m) = 201'(m); and for a > 0, as in deriving (18): 

P(2am) = ? [T(d)f(2aa) + T(2d)f(2a-1a) + . + T(2ad)f(a)]; 
m 

whence for a > 1, 

P(2m) = >j T(2d)f(a), P(2am) = I - T(2a-2d) + T(2ad)}f(a)]; 
m m 

and as in ? 12 on substituting the values of T(2d), T(2ad) for a = 2, 3, 4, 
We find 

P(2m) = 2[2 - (2 m)]Qj'(m); P(4m) = 2[3 - (2j m)]Q21'(m); 

P(2am) = 3.2a-101'(m), o > 2, 

agreeing with the statements of Liouville, loc. cit., ? 4. 
14. As a last example, let us find the P(n) when (1) is a sum of 4, 6, 8, 

10 or 12 squares, from the known factorable T(n), all of the latter having 
been most simply derived by elliptic functions.t 

(i) For four squares we have 

T(m) = 8r1(m); T(2am) = 24?1(m), a > 0. 
* J. des Math. (2), 7 (1862), pp. 62-64. The P(n) for the following papers in the same 

volume may be proved as in ? 13: 145-147; 148-149; 201-204; 205-208. 
t See the cited papers of Glaisher and Mordell for theorems and references, to which add the 

following for 10, 12 squares: Liouville, J. des Math. (2), 11 (1866), pp. 1-8; 6 (1861), pp. 369-377; 
233-238. Proofs for the remarkable general T(n) formulae in these papers of Liouville will appear 
shortly in the Bulletin of the American Math. Society. Combined with those proofs, the formulae 
for Zr(n), Er(n), Er'(n) in ? 11 above give at once the proofs for Liouville's general P(n) formulae, 
ibid., pp. 373-376. The relation between the 10 and 12 square theorems and the rest of Liou- 
ville's T(n) results is simple and striking: the "formules generates" whence Pepin proved the 
latter are direct paraphrases of trigonometric identities arising from elliptic identities such as 
sn2x = snx X snx, when for snx, sn2x are substituted their Fourier developments and coefficients 
of qn equated; the general theorems whence Liouville deduces his 10 and 12 square results come 
from precisely the same identities when for the elliptic functions and their powers are substituted 
their power-series expansions, and coefficients of Xn equated. Thus all these apparently diverse 
results are seen from the standpoint of elliptic functions to be ultimately the same, differing only 
in algebraic details. The use of the "formules generates" can be avoided entirely, by assigning 
x the values wr/2, 7r/3, 7r/4, 4r/5, wr/6, 7r/8 in the trigonometric identities, the procedure thence on- 
ward being obvious from the first sections of Pepin's memoir. As further indicating the connec- 
tion with elliptic functions of Eisenstein's 10-square and other results, all of his assertions concern- 
ing 10 squares are proved by Glaisher's formula (i), Q. J. Math., 38 (1906-7), p. 22. The P(n) 
formulae for 4 and the P(m) for 6 squares found above agree with those determined arithmetically, 
cf. Bachmann, Quadr. Formen, pp. 602, 652. 
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Hence by ? 10 and ? 11 (iv), 

P(m) = 8Z1(m); P(2m) =-24Z1(m); P(4m) = 16Z,(m); 
P(2am) = 0, a > 2. 

(ii) For six squares the known T(n) is 

T(n) = 4[4i2'(n) - 42(n)]; 

-and therefore by ? 11 (iii): 

P(m) = 4[ 4Z2'(m))- Z2(m)] = 4[ 4 - (- lm)]22'(m); 

P(2m) = 4[16Z2'(m) -2(M)] = 4[16 (- 1 m)]Z2'(m); 

P(2am) = 15.22aS2'(m), a > 1. 

(iii) For eight squares, T(n) = -16(- 1)n[2r3'(n) - P3(n)]. Hence 

T(m) = 16r3(m); 7T(2am) = 16[23(a+1) - 15] 3(m), a > 0; 

P(m) = 16Z3(m); P(2m) = 112Z3(m); 

P(2aM) = 144.23(a-l)Z3(m), a > 1. 
(iv) For ten squares the only factorable case is for n = 2bm, b O0 

m_ 3 mod 4: 
T(n) = 4[W4(n) + 16U4'(n)]. 

To find P(n) we have, by the general formulae, 

P(m) = E T(d)f(b); P(2m) = E T(2d)f(b); 
m m 

P(2am) = i [T(2ad) - T(2a-2d)]f(b), a > 1. 
m 

The divisors d remaining in these formulae after reduction will all be of 
the prescribed form 2b(4k + 3) when and only when m is a prime 3 
mod 4. Hence in this case only we get the following for the numbers of 
proper representations as a sum of ten squares: 

P(m) = T(1)f(m) + T(m)f(l) = T(m), 

the only divisors of m being 1, m. For this value of m, U41(m) =-1 + M4, 
t4(M)= 1- '4; hence P(m) = 60(m4 - 1). Similarly 

P(2m) = T(2)f(m) + T(2m)f(1) = T(2m); 

P(2am) = T(2am) - T(2a-2m), a> 1; 

and hence, after obvious reductions, 

P(2m) = 1020(m4 - 1); P(2am) = 255.22(2a1)(m44- 1), a > 1. 
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There are no similar theorems for m not a prime of the form 4k + 3. 
(v) For twelve squares a factorable T(n) exists only when n is even: 

31 T(2am) = 24[21 + 25a+l *5]?5(m), a > 0. 

Hence, at once by ? 11 (v), we find P(2m) = 264Z5(m); a result stated 
without proof by Liouville in a letter to M. Besge (J. des Math. (2), 5 
(1860), p. 145). For a> 1: 

P(2am) - [T(2ad) - T(2a-2d) 

Now 2ad, 2a-2d will both be even when and only when a > 2; and we find, 
on simplifying, 

P(2a+lm) = 495- 25a-6Z2(m), a > 2. 
15. The extensions of the fundamental formula (11) and ? 7 to (3) 

are obvious and at present of slight interest: it is sufficient to replace f(n) 
by the factorable f8(n), which vanishes unless n is the sth power of a 
simple number, in which case its value is i 1 according as the multiplicity 
of n is even or odd. 

UNIVERSITY OF WASHINGTON. 
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